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This work extends the comparison between exact and approximate solutions of 
the McKean model to finite particle numbers. We derive the coupled linear 
equations of motion for the m-body densities (BBGKY hierarchy) and the 
corresponding nonlinear equations for the m-body correlation functions. We 
calculate the stable fixed points and the subspace admitting a probabilistic inter- 
pretation for both descriptions of the model. Neglecting higher correlations with 
m > n, we obtain approximate solutions, which are compared to the exact one. 
In this way various truncation effects can be studied, such as the appearance of 
saddle points and unphysical trajectories. Finally, we linearize the truncated 
equations for the correlations about the stable fixed point, and calculate the 
relaxation times up to O(N-~). 
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1. I N T R O D U C T I O N  

A m a n y - b o d y  system can be descr ibed by the N - b o d y  p robab i l i t y  dis t r ibu-  
t ion funct ion f N  which evolves in t ime accord ing  to the Liouvil le  equat ion .  
By tak ing  traces with respect  to N - m  (1 ~< m ~< N) part icles ,  these equa-  
t ions can be t r ans formed  into the B B G K Y  hierarchy  of coupled  equat ions  
which couple  the m - b o d y  reduced d i s t r ibu t ion  funct ions fm to fm +~" In the 
general  case this h ie ra rchy  canno t  be solved exactly,  and  some a p p r o x i m a -  
t ions must  be made.  By a cluster expans ion  of the d i s t r ibu t ion  funct ions 
into one-par t ic le  d i s t r ibu t ions  and  cor re la t ions  g,,,, a new h ierarchy  for the 
{f~,  gm 12 ~< m ~< N} is ob ta ined  tha t  can be t runca ted  by ei ther  neglect ing 
or  mode l ing  of  h igher  cor re la t ions  gm (m > n). Thus, the mean  field theories  
are ob ta ined  by  d i s regard ing  all corre la t ions ,  while the Bo l t zmann  coll is ion 
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integral is a model for g2. On the next level one obtains equations of 
motion for g2 in the polarization approximation g3 = 0 and g2 < f l  " f  l, 
which describe the time evolution of the two-particle correlations for weak 
coupling/1) In the strong coupling, time-independent case the Kirkwood 
approximation for g3 has been used to derive the hypernetted-chain (HNC) 
and related integral equations for the static two-particle correlations. (2/ 

Clearly any approximation schemes must not violate basic physical 
principles such as the conservation laws ~3~ and the trace relations for the 
reduced distribution functions/g) Here we want to address two problems 
which may arise during the time evolution of a system. First, in the deriva- 
tion of kinetic equations the Bogoliubov assumption is usually invoked, 
i.e., truncations are justified by assuming that any initial correlations are 
quickly attenuated." Second, approximate evolution equations do not 
necessarily guarantee that the system remains for all times in the subspace 
where a probabilistic interpretation is possible. Because of the H-theorem, 
this cannot happen on the level of the Boltzmann equation for f l ,  but there 
seems to be no a priori reason why such an unphysical behavior could not 
occur if the truncation is made on a deeper level, This can in fact be 
explicitly demonstrated for the first two equations of the BBGKY 
hierarchy. 

Here we do not give a general answer to these questions. Instead we 
want to use the McKean model (5) as a test case. It has been shown 
previously that this model is in fact exactly solvable for N-~ o .  (6) In the 
present paper we want to employ the McKean model with finite N in order 
to study the Bogoliubov assumption and possible violations of the 
probabilistic interpretation during the time evolution. 

The paper is organized as follows. As a motivation for our work we 
critically discuss in Section 2 a derivation of an H-theorem for nonideal 
gases. (1) We derive an expression for the time evolution of the entropy and 
show in particular that the trace relations must be applied before taking the 
thermodynamic limit in order to obtain physically reasonable results. In 
the subsequent discussion of the McKean model we use the same kind of 
argument in a different direction: We use an extended H-theorem for the 
McKean (v) model in order to identify the physically allowed subspace 
admitting a probabilistic interpretation during the entire time evolution of 
the system. For that purpose we introduce in Sections 3 and 4 the McKean 
model and deduce the BBGKY hierarchy in closed form as well as the 
explicit first equations of the hierarchy for the correlation functions. It is 
advantageous to discuss both treatments in parallel. We determine the 
equilibrium subspace and the physically (p-) allowed region admitting a 
i~robabilistic interpretation in Sections 5 and 6. Next we show in Section 7 
that truncation leads to unphysical trajectories. In contrast to the case of 
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an infinite number of particles, N--, 0% these problems cannot be overcome 
by regarding only trajectories starting in the p-allowed region/6) A further 
restriction on the admissible states of the system is needed. For this 
purpose we consider in Section 8 the sign of the entropy production. 
Finally, in Section 9, we linearize the equations for the correlations about 
the stable fixed point and obtain closed formulas for the eigenvalues up to 
order 1IN. It turns out that the higher correlations contain slowly relaxing 
components with amplitude O(1/N). 

2. C O R R E L A T I O N S ,  T R A C E  RELATIONS,  T H E R M O D Y N A M I C  
LIMIT,  A N D  E N T R O P Y  IN THE CLASSICAL KINETIC T H E O R Y  

We want to study the time evolution of the entropy in the classical 
kinetic theory, taking the two-particle correlations into account. The 
Liouville equation for the classical N-particle probability density 
fN(xl,..., XN, t) with the phase space coordinates xi = (ri, p,), i = 1 ..... N, is 
given by 

afx (#H Ofu aH 
=~i k --~'--" 

(2.i) 
~3p, up~ vr e/ 

where H is the Hamilton function involving the central two-body inter- 
action ql o. We normalize according to 

!dx~.. "dXNfN(Xl t )=  1 (2.2) XN, 

and introduce reduced m-particle distribution functions by 

fm(Xl ..... Xm, t ) = v m f f N ( X l  ..... XN, t) dxm+l . . .dx  N (2.3) 

where V is the volume of the system. Integrating with respect to N - m  
variables, one obtains for m = 1, 2 the first two equations of the BBGKY 
hierarchy, (~) 

~?fl N -  1 ~ &b12 63f2 dx2 (2.4) 
& V J Or~ ~p~ 

and 

9 a a a~12 ~? a~,2 O ) 
& + v '  ~rl +v2 & 2 ar 1 apl ar2 42  f2 

-- N V 2 I \ 0 r l  0p, + 0r - p2 f3dx3 (2.5) 
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Here v = p/m is the velocity of the particles and it has been assumed that 
the system is translation invariant. In anticipation of later problems, we do 
not take the thermodynamic limit at this stage. We use now the cluster 
expansions 

A(xl, x2)--A(Xl)A(x2)+ g2(x1, x2) 

/3(x1, x2, x3)=fl(xl)fl(x2)fl(x3)--~-fl(Xl) g2(x2, x3) (2.6) 

q- fl(x2) g2(xl, x3) -~ fl(x3) g2(x1, x2) q- g3(xl, x2, x3) 

with the correlation functions gm(Xl, . . . ,  Xm). These fulfill the trace relations 

f grn(Xl ..... Xm) dxi = O, Vi = 1,..., m (2.7) 

because of the definition (2.3) of the reduced distribution functions. 
Insertion of the cluster expansions (2.6) into Eqs. (2.4) and (2.5), dropping 
the three-particle correlations, and using the translational invariance yields 

8fl N -  1 (~12 892 
6~l V f 8r 1 63plY x2 (2.8) 

and 

~ + v 1 ~ l r l q - V 2 0 r :  0r 1 c3ll 1 0r 2 Op2] f2 

N - 2 8  
- N -  1 8t (f~(x~)f~(x2)) (2.9) 

The entropy density of the system is given by 

k N _l_k N ( N - 1 )  f2 
S = - B - ~ g f f l l n f l d X l  2 ~ V3 ff21n dx~dx2 (2.1o) 

where the second term accounts for pairwise correlations. (1) Taking the 
derivative with respect to time and using Eqs. (2.4) and (2.5), one obtains 

8S 8S~ 8S2 
8t 8t 8t 

N d 1 
= - k B - v s f ~ t l n f ~  x l - ~ k B  

N(N-1)f~ A 
V3 In ~ dxl dx 2 (2.11) 
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In the correlation term 8S2/St we subtract a multiple of an integral which 
is zero to the order considered. For that purpose we follow ref. 1 and 
multiply the modified Eq. (2.8), 

aL(x~) A(xj  
Ot 

N-V 1 <fi(x2) ~_ 0q~13~ri ag2(xl,~p~ x3) dx 3 _t_ A(xl)  

0(J23. ~g2(x2, x3) dx3) (2.12) 
~ (3r2 ~P2 

• 

with 

lkBV - 2 ( N  N21n fz "] 
- 2  -vln f~A + T A L l  dxl dx 2 (2.13) 

integrate with respect to xl and x2, and drop the third-order terms on the 
right-hand side. This yields 

S ~t 1 U2[~flflln f2 dxldx2 -k ,~- i f  lnf~dxl-~kB~Tj cgt f~f~ 

N(N- 1) [ 0~,2 #g2(~, x2) ln.L(x~) dx~ dx2 (2.14) ~ k ~ 
V 3 d Or~ #Pi 

Because of Eq. (2.8), one has then 

r ,n I2 . f - ~  dxi dx2 = 0 (2.15) 

and the correlation term of the entropy can be written as 

f Of21n I"2 dxl dx2 
--~ flfl  

= f O(.f2 N-2  \lot - - N - - ~ f l f l ) /  IDf2dXldX2 

( .-2 )/Io, 
--fo f2 N _ I A A  lnf~AdxldX2 (2.16) 

The first term on the right-hand side is zero; this follows by applying 
Gauss' theorem to Eq. (2.9). The remaining term is evaluated with the help 

822/57,,'1-2-18 
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of Eq. (2.3). The correlation contribution to the time evolution of the 
entropy is then 

c3S___~2=1 N(N-  1) ~ft 2 
c~t 2 ks ~-5 f in f2  d x  1 dx  2 

L L 

=12k B N ( N - 1 ) 2 V (  1 ~-5 ~ - _  ~ ) f  ~tlln f i N - 2  dxi 

= k  N 3fl B ~-s f ~-~ ln fl dXl 

3S1 
- g t  (2.17) 

which cancels the first-order contribution. The result 6~$2/6~t = 0 in Section 14 
of ref. 1 is obtained by taking the thermodynamic limit in the second term 
on the right hand side of Eq. (2.16) in an incorrect manner, 

N - 2  \ lot  

( )/, # f lim O iT - ~--y-~ f , f ~ t ln f i f l dxi dx2 

= f ~t ln f,  f, dxl dx2=O (2.18) 

Here the last equality sign follows from the trace relation (2.7). One may 
therefore not drop the three-particle terms altogether in order to study the 
time evolution of the entropy S=  $1 + $2 of Eq. (2.10). While Boltzmann's 
H-theorem ~$1/3t >>,0 can be obtained by modeling g2 with the help of 
Bogoliubov's assumption of complete weakening of initial correlations, (1) 
one also needs now models on the deeper level for g2 (or f3). This may lead 
to problems with the probability interpretation of the theory if the resulting 
equations of motion for f l  and f2 become incompatible because of a viola- 
tion of the trace relations (2.3) as occurs, for example, in the Kirkwood 
superposition assumption 

f2(Xl, X2)f2(Xl, X3) U2(X2, X3) f3(X,,X2, X3) ' 
L(X,) L(x2) fI(X3) 

(2.19) 

In the following we will pursue such questions in a somewhat different 
direction. We investigate the McKean model, which is, in contrast to 
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kinetic theory, not time-reversal invariant on the microscopic level. The 
physically allowed regions for the time evolution of correlation functions 
will then be studied with the help of an extended H-theorem. I7) 

3. THE M C K E A N  M O D E L  

We consider a system of N particles, i =  1 ..... N, where each particle 
can occupy two states, e g =  _+1 or (1", +). After an interaction, two particles 
i, j will be found in states e*, e* according to 

= e/ } ~e* or ~'e* = e,ej~ (3.1) 
~e*=e , e j  ~e* e/ ) 

or, more explicitly, 

2' +1, +1 
+ 1 , + 1  

"-~ +1, +1 

/" - 1 ,  - 1  
- 1  +1 

"~ - 1 ,  +1 

+ l , - 1  
+1, - 1  

- 1 ,  - 1  

/~ - 1 ,  +1 
- 1 ,  - 1  

"~ + 1 , - 1  

both possibilities having the probability 1/2. 
This scattering law is not time-reversal invariant. We describe the 

system by distribution functions that are symmetric in their arguments, 

f N ( e  i ..... e i ..... e/,..., eN, g) 

= f x ( e i  ..... e j  ..... el,..., eN,  t)  (3.2) 

and are normalized according to 

f N ( e ~  ,..., eN, t )=  1 (3.3) 
ei = + 1  

l ~ i < ~ N  

Similarly, we can define reduced m-particle distribution functions by 

f m ( e l  ..... e , , ,  t ) =  ~ f x ( e l  ..... eN,  t)  (3.4) 
e i ~  + /  

rn < i <~ N 
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A kinetic equation for the N-particle distribution function is simply given 
by the difference of distributions before and after the interaction assuming 
a transition rate 2IN, 

8 
-d~fN(el ..... eu, t) 
~T t 

1 

- U  l <~i<j<~N 
[fN(e,,..., ei,..., ejei,..., e~, t) 

+ fN(el,...,eiej ..... ej,.,.,eN, t)--2fN(el,...,eN, t)] (3.5) 

As a consequence of the interaction law (3.1), a distribution function with 
all its arguments in state + 1 is a constant of motion. We will show in 
Section 3 that this will lead to a continuum of equilibrium states. Since the 
distribution functions are symmetric in their variables, they differ only in 
the number of particles that are in state + 1. Therefore we use, wherever 
possible, another notation: 

fm means that all m arguments have the value + 1 

fm(k$) means that exactly k arguments have the value - 1  

We obtain a hierarchy of evolution equations for the reduced distribution 
functions fm by summing (3.5) over e, ,+,  to eN. This yields 

8 
eN) 

el= +1 
m<i<~N 

8 
= ~ t f m ( e l  ..... em) 

1 
= ~[ E [ fm(  el ..... ei,'", eiej ..... em) 

i< j~m 

+ fro(el,..-, eiej,..., ej ..... em)-  2fm(el ..... em)] 

N - m  
- ' } - - -  E E [ f m + ' (  el . . . . .  e i , . . . , e iem+l)  

S e r a + l =  +1  i<~m 

+ f~+ l(ei ..... eiem+ 1,..., em+ 1) - -  2fro+ ,(e,,..., era+ , ) ]  (3.6) 

It is sufficient to study the evolution of the distributions fm with all 
arguments having the value + 1, because the distributions with arbitrary 
arguments can be obtained with the help of Eqs. (3.3) and (3.4). This yields 
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~tfm= --m [2f~--2f.+,--fm+1(+)--fm+1(2+)] 

: --rn (3fm--fm_,--2Jm+~) l~rn<<.N (3.7) 

These equations represent the BBGKY hierarchy of the McKean model. It 
is a system of coupled linear differential equations with constant coef- 
ficients. The solution can be obtained with the ansatz f,~ocexp ,~.m I. 
Obviously 2 N = 0  and our calculations will show that all A~,,<N are 
negative. The system will therefore always reach equilibrium. 

4. E Q U A T I O N S  OF M O T I O N  FOR THE C O R R E L A T I O N S  

We derive equations for the correlations by making use of the cluster 
expansionJ 8'9) In the present case, where all arguments ei have been set 
equal to + 1, we cannot distinguish, for example, between the two-particle 
correlations g2(e~, e2) and gz(e2, e3). This leads to the appearance of com- 
binatorial coefficients in the expansion. The first three expansions are 

f2 : f~  + g2 

f3 : f~  + 3f~ g~ + g3 (4.1) 

f4= f4  + 6f ~ g2 + 4fl g3 + g4 + g 2 

Substitution into the BBGKY hierarchy (3.7) yields the 
motion for the correlations gm, the first five of which are 

co,f~ = ( N -  l )  (3f ~ -  l -  2f  ~ -  2gJ (4.2) 

1 
COt g2 = ~ (6f 2 - 4f~ - 2fl - 20fl g2 + 12g2 - 8g2) - 692 + 4g3 + 8f~ g2 (4.3) 

1 
CO, g3 = ~ (36f~ g2 + 27g3 - 36f~ g2 - 48fl g3 - 18g4 - 6g2 - 48g~) 

+ 12fl g3 - 9g3 + 6g4 + lZg 2 (4.4) 

l 
cot g4 = ~ (72fl g3 + 48g4 + 72g22 - 12g3 - 88f~ g4 - 72f~ g3 

- 3 2 g s - 2 6 4 g 2 g 3 - 1 4 4 f l g Z ) - 1 2 g 4 + 1 6 f ~ g 4 + 8 g s + 4 8 g z g 3  (4.5) 

equations of 
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0 1 , gs = ~ (120f~ g4 '}- 75gs + 360g2 g3 - 20g4 - 140f, gs - 240g 3 - 720f~ g2 g3 

- -  120f~ g 4  - -  420g 2 - -  5 6 0 9 2  g 4  - -  5 0 g 6 )  - -  15gs 

+ 20fl gs + 60g 2 + 80g2 g4 q- 10g6 (4.6) 

For m = N the coefficient multiplying g,~ + 1 vanishes, so that the complete 
set of equations is closed in a natural manner, similar to the original 
BBGKY hierarchy (3.7). The structure of these equations for the correla- 
tions is more  complicated, however, since they are nonlinear. They can 
only be integrated numerically. 

5. EQUIL IBRIUM STATES OF THE M O D E L  

We first take a look at the distribution functions. To obtain the fixed 
points we set J~m = 0 in Eq. (3.7). As fu = const, this leaves a linear system 
of N - 1  nontrivial equations for the N equilibrium distributions. The 
explicit equilibrium solutions 

(2"- 1)f,--(2 m - l -  1) 
fro-- 2m 1 (5.1) 

span a one-dimensional subspace. ]he re  exists an N-tuple of functions 
{fm l 1 <<.m<<.N}, where the fm>~2 depend linearly on f l .  The equilibrium 
states are therefore lying on a straight line in the space of the {fm}, which 
is shown as the dashed line in Fig. 1 for the case N = 3. They can be labeled 

Fig. 1. 

f3 

j 
~ 

/ 

I // 

fl 

/g 

f2 

The uni t  cube spanned  by {J],f2,f3}. The p-a l lowed  region forms the solid pr i sm 
within  the cube. The equ i l ib r ium states  lie on the dashed  line wi th in  the prism. 
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according to the value o f f l .  With the help of Eq. (3.4), we can calculate the 
remaining distribution functions, 

! - f l  
f m ( k $ ) - 2 m _  1 , kE {1,..., m} (5.2) 

Comparing Eqs.(5.2) and (5.1) shows that for f i = 1 / 2  one has a 
microcanonical ensemble, each state being occupied with the same 
probability. 

Since Eqs. (4.2) (4.6) are nonlinear, we cannot describe the equi- 
librium state in terms of the correlations as simply. Solving these equations, 
we also obtain a one-dimensional solution in form of a curve in the 
N-dimensional space of correlations. The equilibrium state is now described 
by a polynomial in {fl,  gm } which is implicitly given by 

3 1 
g2 = ~ L  - ~ - f ~  (5.3) 

dgm-- 1 
g i n = g 2  dfl  ' 3~<m~<5 (5.4) 

The projections of this polynomial into the f l  gm planes are shown in 
Fig. 2. 

gp 
.1 

-.2 

.5 fl 10 

Fig. 2. Projection of the curve of fixed points in N-dimensional space onto each fl--gm plane 
for m =2,  3, 4. 
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6. PROBABIL IST IC  S U B S P A C E  

As a probability distribution each fm must fulfill 0 ~<fm ~< 1, i.e., the 
{fm} lie in a hypercube. The N + I  distribution function fro(kS) for 
0 ~< k ~< m and fixed m also can take only values from 0 to 1. This leads to 
a further restriction for the reduced distributions fro, as can be seen by 
taking a closer look at the reduction (3.4), 

fm(k~.)+fm[(k+l)J,]=fm l(k{), k e  {0, 1,..., m -  1 } (6.1) 

This gives m conditions and since all fro(k{) are nonnegative, the 
inequalities 

fm(k~,) ~fm 1(k$) (6.2) 

must hold. These conditions can be expressed in terms of reduced distribu- 
tions {fro}, where all arguments are + 1 

k _< fm ~ ~+~with k ~ { 0 , 1 , . . . , m - 1 }  (6.3) (-1) f , .~ y, (-1)J k+ l  
j=o J 

This formula yields N! conditions, since we have to vary m from 2 to N and 
also k from 0 to m -  1. We regard, for instance, the case N =  2, m = 2: 

k=0: A<A 
(6.4) 

k = l :  f2 ~> 2 f 2 -  1 

which describes a triangle in {fl ,  f2} space. For N =  3 we have, in addi- 
tion, to consider m = 3; this yields 

k = 0 :  f 3 < . f 2  

k = l :  f3>~2f2-fl (6.5) 

k = 2 :  f3~l--3f~+3f2 

Now the subspace of the unit cube spanned by {fl ,  f2, f3 } in which all the 
relations (6.5) and (6.4) hold is the prism shown in Fig. 1 and the triangle 
corresponding to (6.4) alone is the projection of the prism on the {fl ,  f2} 
plane. Similarly, an expansion to N = 4  yields only further conditions 
between f4(k{) and f3(k{), so the prism of Fig. 1 is the projection of a 
higher dimensional prism to three dimensions, and so on. With the help of 
relations (6.3) we have thus explicitly constructed a subspace within the 
hypercube spanned by the {fro} in which a probabilistic interpretation of 
the theory is ensured. We will call that subspace the p-allowed region. The 
prisms in {f,~} space translate into regions of rather complicated shape in 
the space of correlations {f l ,  gin}, because of the nonlinear equations (4.1). 
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7. TRUNCATION OF THE HIERARCHY FOR THE 
CORRELATIONS 

In general the many-body problem cannot be solved exactly and one 
has to truncate the BBGKY hierarchy at some level. In this section, we 
investigate the consequences of a truncation of Eqs. (4.2)-(4.6) for the 
McKean model on the nth level by setting g ,+ l ( t )=0 .  The first n 
equations with 1 ~< m ~ n form a closed set. In the simplest approximation 
one neglects all two-particle correlations g2(t)= 0 and obtains 

c~,f,=(N-1) (3fl- l -  2f2 ) (7.1) 

This equation has an attractive fixed point for fl  = 1//2 and a repulsive one 
for f l  = 1. (6) Its solution is 

l[ ae(I/N-1)' 1 fx( t )=~ l+l_a~Te~-iTTV ')'5 with a=2fl(t=O)-I (7.2) 

i.e., the system reaches equilibrium faster for a larger number of particles 
N. On the next level n--2, we set g3 ~- 0 and the remaining equations are 
n o w  

~,fl=(1--1)(3fl--l--2f~--2g2) (7.3) 

1 Gg2=~(6f2--4f~--2f~--20f~g2+12g2)--6g2+Sf~g2 (7.4) 

These equations have in addition to the fixed points (fl,  g2) = (1/2, 0) and 
(1, 0) another one at (3/4, 1/16). We linearize Eqs. (7.3) and (7.4) about 
these fixed points, make an exponential ansatz <exp 2t for the solutions, 
and obtain the eigenvalues 

1 /1 30 65 \1/2 7 
_ j f l ,  o) (7.5t 

1 6 7 )iJ2] 
2 = ~ [ ( 3 - 3 ) _ _ + ( 1 - ~  N N2j j a t ( ~ , 0 )  (7.6) 

l ~+_(4  12 17'] 1/2- } 
, ~ =~I  - 3 ~ + N 2 )  j a t ( ~ , ~ 6  ) (7.7, 

Inspection shows that the fixed point (1/2, 0) is attractive for all particle 
numbers, while (3/4, 1/16) is a saddle point and (1, 0) is repulsive with 
complex eigenvalues for 2 < N < 28. 
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In general, we have different sets of fixed points at each level n of 
truncation, which is a consequence of setting gn+ l ( t )=  0. We have seen in 
Section 5 that the exact equilibrium solution of the McKean model is a 
one-dimensional curve in the N-dimensional space {fl ,  gin}, which could 
also be labeled by choosing g,+ l ( t )=  const as a parameter. Truncation in 
the nth level is achieved by setting this constant equal to zero. Therefore, 
the fixed points appearing at each truncation level n can be read off Fig. 2; 
they coincide with the zeros of g~+l. In particular, the attractive fixed 
point (1/2, 0) and the repulsive fixed point (1, 0) occur at each level of 
truncation. 

8. T I M E  EVOLUTION OF THE ENTROPY 

The existence of saddle points poses a problem, since the truncated 
subdynamics may lead to unphysical trajectories: The case N--,oc is 
uncritical, as all saddle points already lie outside the p-allowed region for 
the correlations. (6) For finite N, however, some saddle points will lie in this 
region as it broadens, with a decreasing number of particles. In the case 
N = 3, for example, the p-allowed region is sufficiently large to contain the 
saddle point (3/4, 1/16). Trajectories which start in the p-allowed region 
outside the basin of the attractive fixed point (1/2, 0), will eventually leave 
the p-allowed region during the course of the dynamic evolution of the 
system. The admissible initial conditions must therefore be restricted 
further. For that purpose we study the entropy of the McKean model, 
which is given by (7~ 

with the Liapunov function 

S = l l n ~  (8.1) 

so that 

O<~k<~N 

O<~k<~N 

For N = 3 one has explicitly 

S =  -t-2-1 [f3J'3 + 3f3(+)f3(+) + 3f3(2~,) f3(2+) +f3(3J,) j3(3,L)] (8.4) 

Next, we expand the three-particle distribution functions into clusters and 
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neglect the three-particle correlations g3. The sign of the entropy produc- 
tion is 

sgn S =  -sgn{ (f~ + 3f~ g2)(3J'~j~ + 3j'~ g2 q- 3f~ g2) 

+ 3[ f~( l  - f ~ ) -  (3f, - 1) g2] 

x [2fl fl(1 - f l ) - f 2 L  -- 3j~ g2 - 3f~ g2 + g2] 

+ 3(f~ + f ~  - 2fl 2 + 3f, g2 - 2g2) 

x (j~ + 3 j ~ f  2 - 4f~ f~ + 3j ~, g2 Jr- 3f, g2 - 2#2) 

2 3 + (1 - 3f~ + 3f~ - f l  q- 3g2 - -  3f, g2) 

x [ - 3f1(1 - - f l  )2 _~_ 3~ 2 _ 3fl g2 - 3fi g2] } (8.5) 

Substituting J'l and g2 from hierarchy equations (4.2) and (4.3), one finds 
that this equation yields a curve in the (f l ,  g2) plane that separates a 
region S > 0 which is allowed with respect to the entropy production from 
a forbidden region with o 6 < 0. In Fig. 3 this S-allowed region lies left of the 
dashed curve, while the p-allowed region lies within the solid curves. We 
show that the saddle point lies on the dashed curve and that it is not an 
isolated point with o6=0 [such as (1/2, 0)]. For that purpose we prove 

\ 

Fig. 3. 

g2 
2 

-1  

i ~ i t 5 i i , q 

�9 L 10 

The p-allowed (diamondlike area within the solid lines) and the s-allowed (left of the 
dashed line) regions for a truncated [g3(t)-= 0] system of three particles. 
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that in every 8 circle around (3/4, 1/16) there are points with S >  0 and 
o ~ < 0. We consider the curve 

g 2 = 3 f l - - 1  f2  (8.6) 

on which f~ vanishes, so that Eq. (8.5) reads 

sgn S =  -sgn[~z(132f  2 - 126f 2 + 54fl - 9 - 48f4)] (8.7) 

g2 can be expressed with Eqs. (4.2) and (8.6) as 

~2 = ~ ( k  - - ] ) ( A  - � 8 9  - 1)  (8.8) 

So we have a polynomial of seventh degree in f l  for the entropy produc- 
tion. Calculating its sign, we find 

- 1  for 3 / 4 < f 1 <  1 

sgn S = 0 for f l  = 1/2, 3/4, 1 (8.9) 

1 for 0 < f 1 < 3 / 4 ,  f 1 r  

All trajectories that start within the s-allowed and the p-allowed region 
reach the equilibrium fixed point (1/2, 0), i.e., run within its basin. We 
confirmed this also by actual numerical calculations. 

9. RELAXATION T I M E S  OF THE M C K E A N  M O D E L  

It is usually assumed that the truncation of the BBGKY hierarchy for 
a general many-body system near the equilibrium is justified, because the 
higher correlations decay faster than the one-particle distribution function 
toward equilibrium. In the McKean model this assumption has been 
proven for infinite particle number N. (6) In order to investigate finite N, we 
linearize Eqs. (4.2) (4.6) about the only stable fixed point (1/2, 0), which 
occurs on every level of truncation. We set therefore 

gm=em and f l  = 1 -~- ~:1, rn~>2 

Since we expand the correlations about zero, all terms of the cluster 
expansion (8'9) with more than one correlation vanish, and only products of 
the 8,, with 1/2 remain. The expansion can be given as a closed formula, 
which we call the linear cluster expansion: 

fm=i~o i ~8.z ~, 80 := 1 (9.1) 
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We show in the Appendix that we obtain a new linear hierarchy for the 
reduced correlations e m by substituting Eq.(9.1) into the BBGKY 
hierarchy (3.7) and, by induction, 

- 2N gin-- ~ + - -  m e m + 2 m  e , .  + 

We solve these equations with ~m = exp 2,,,t, which yields a secular equa- 
tion for the eigenvalues 2 m that we expand to first order in terms of 1IN. 
The rank of the eigenvalue equations is the level of truncation n. We obtain 
for the eigenvalues .~(~) ~ m  ~ 

for n = 2 and 

) .~2)  = 3IN-  1 

) ( 2 )  = - 2  
(9.3) 

;~3) = 3 / N -  1 

2(23)= 12/N- 2 

2~ 3) = - 9 / N -  3 

for n = 3 .  
Increasing the truncation level changes the second eigenvalue 2 2 and, 

of course, yields a third one )~ This regularity occurs at every level of 
truncation. We show in the Appendix that the general formula for the 
eigenvalues is 

2 ( ' / = m  ( ~ -  1) (9.4) m 

for l<~m<~n-1 and 

n 3 2n 2 

( ' ) -  N +  N 
,~oo - - n -  ( 9 . 5 )  

f o r  m = / 7 .  

These formulas indicate an asymptotic convergence in the sense that 
truncation at a given level n introduces errors which decrease as N ~  oo. 
For the relaxation times we must take a look at the complete solution of 
Eq. (9.2), 

e ('~= ~ c~, ) exp(2~)t) _x~ ) (9.6) 
m = l  
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where the C(m ') are expansion coefficients determined by the initial state and 
x n) m are the eigenvectors. With the help of Eqs. (9.4), (9.5), one finds by 
inspection of Eq. (9.2) that the first m components of ~(') are O(1), while * ~ m  

the remaining are O(N-1). Writing out Eq. (9.6) and dropping the super- 
script n for simplicity, one has therefore 

(!) (1/2j  (i) = C 1C "~xt " + C2 e'~2t ~3 !N  + ""  + Cm e;~mt (9.7) 

\~m/N / \/3,~/N / 

with all am, fi . . . . .  , 7,, being O(1). 
We see that all eigenmodes contribute to each correlation •m, and the 

f i rs t  m -  1 modes of the mth correlation are weighted with a factor 1IN. 
For finite N it is therefore not generally true that higher correlations decay 
faster than the lower ones, as there remain slow components with a small 
amplitude. 

Finally, we note that the linearized hierarchy of correlations (9.2) is 
connected to the original BBGKY hierarchy (3.7) by the linear cluster 
expansion (9.1) and other linear operations. In the limit N ~ oo the eigen- 
values of the BBGKY hierarchy for the distribution functions are therefore 
also given by Eq. (9.4). 

10. C O N C L U S I O N S  

In this paper we addressed some problems associated with the trunca- 
tion of evolution equations for reduced densities. We showed that the ther- 
modynamic limit of the kinetic theory has to be taken carefully if one 
wants to study the time evolution of the entropy including two-particle 
correlations. In order to obtain a nonvanishing entropy production, model 
assumptions for the three-particle correlations are needed which must 
preserve the probability interpretation of the theory for all times. As an 
example, we used the McKean model with a finite number of particles. We 
derived the complete BBGKY hierarchy of the distribution functions { f m }  
for this case, found a one-dimensional equilibrium subspace, and described 
the boundaries of the p-allowed region in which a probabilistic interpreta- 
tion of the theory is possible. The correlation functions {fl ,  gm ~> 2} were 
introduced with the help of the cluster expansion in order to study the 
effects of truncation on the nth level by setting g">n ~- 0. As a consequence 
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of the truncation, there appear saddle points which may lie within the p- 
allowed region of the {fl, g2-<m,<,,} space. There exist therefore trajectories 
which leave this region during the time evolution of the system. In order 
to identify the physically allowed basin of the attractive fixed point 
(f~--1/2, gm =0), we study the entropy production of the system. We 
linearized the hierarchy of correlations about this fixed point, studied 
truncation effects, and showed in particular that the m-particle correlations 
gm include slowly decaying components of amplitude O(1/N). We hope 
that these results might stimulate similar investigations for more general 
models. 

APPENDIX  A 

We want to show by induction that Eq. (9.2), 

2N gm-l-~- - m  am+ 2 m - - -  em+~ 

can be obtained from the BBGKY hierarchy (3.7), 

�9 m 2 

by using a linear cluster expansion (9.1): 

(~) m m -  1 

L= + Z  
i = 0  

~ g m  . -  

To obtain the first relation we set m = 1: 

l _ 2el - 2e2) 

Next we calculate the mth equation with the induction assumption that 
im i ( i > 0 )  is of the form (9.2). First we eliminate all distributions by 
substituting them with the help of Eq. (9.1), 
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im = --m (3fm--f,._~--2f,,,+,)-- ~,~_, 
i--O 

(m~ )[~__~ am +i'~_2(7) = - - m  + ~ 7 ~ g l  -= 

3 1 m - 1  
• i+3em 2m_ l 2.,_ 1 81 

i = l  ~ i S m  i - l - - 8 m  1 2 m + l  

2m 81-- ~ m + l  2 
i=1 i }5 8,,~_ i+ 1--28m+ 1 

2 m-1 - 1  (8 , -282) -  
i = 1  

x =  8,. i-1+ m+i 
2' 2N / 

X g.m_ i -}- ~m + 1 i ( 2 m - 2 i  2m2 + 2i2 - 4m{) 

In the next step we change the summation indices and add all constant 
terms, 

i..,= - m  38m-e., 1-28.,,+1+ i=~2 8m--i 2i  

m - 1  3 

m2 -~- m m 
+~W=-7282 - 1  - ~  e., , 4 8m-- 1 _ 

i - - 2  

x 2i\ N - m + i  + i 1 2 i 1 2N 
( m ) 1 (2 2m2+2i2+gi+2--4mi--4m)] 

+ i+1 ~75 m - 2 i - 2  N 

m(m~N1 ) m(  2 m 2 + 2 - 4 m  ) 

m(m--1)(2m_4_2m2--Sm+8 ) m ( m - - 1 ) ( 2  ) 
8 ~ gm--1 2 "  1 - - 2  e2 

m(m -- 1 )(m -- 2) 
N2 m - 2 g 2 
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Now we collect all correlations that stand out of the sums and the factor 
1/2 i out of the brackets, 

= - - m  ( - - m + 2 )  gm+ g r n - - T - - 1  em t - -2am+l  

i=2 i + 1  i=2 

I ( m ) (  m - i  ) ( m ) i 2 - i - 2 i m + m + m 2  
x i -N m + i  + i--1 N 

+ i + 1  m - - i - - l - -  N 

m + l  am_l - -  ?- 2 m - - 2  a m 
2 N 

m(m--  l) ( 2 m _ 4 _ 2 m 2 - - 8 m + 8  ) 
8 -N am 1 

In order to combine the sums, we have to rearrange the binomial 
coefficients 

~m ~- - - m  ( 2 - - m )  gm+ m - - - ~ - - - 1  e m 1--2am+l 

+ ~ am --- ' 2m+2im ( i + I ) N  
i=2 - ' U  N 

- i + 1  + i + ~  - m + l  

i ( m - O  2 + i m - i  2 ( m - i ) 3 + ( r n - i ) ( 2 i + l - 2 m ) ]  
- ( m - i + l ) N  ~- ( i +  1 ) N  J 

- -  g m  m 2 - m N - em 1 

m 2+ l 
Each term in the sum vanishes. Combining the remaining terms shows 

m ( m  - 1) 
~m 

N 
e ~ _ ~ +  - m  em+ 2rn----~-- gm+l 

QED 

822/57/1-2-19 
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APPENDIX B 

We calculate the eigenvalues ~(~/ of the determinant IA~) I where the ~ m  

matrix A (~) consists of the coefficients of Eq. (9.2) minus )d")E, with the 
unit matrix E. We expand the determinant IA(~)I with respect to its last two 
rows 

IA(")I -- - - n - 2 ( ~ )  ]x4(n 1)1 2N N IA("-2)I 

The induction assumption is now that the eigenvalues of the subdeter- 
minants ]A (n- 1) I and [A ("-2)] differ only in the 1IN correction of the eigen- 
values .~n-2 )(" 1) and "~ Factorizing the subdeterminants, respectively, one 
obtains 

1I ,1 AI-m = 1 

n(n--  1) n-3  
Irnl-] (~(n--2) .,](n)) N 1 "r~m 

Here the 1/N 2 factor of the second term has already been neglected. The 
critical point now is that the difference between "~n~(n 2 ~) and "~n--2:(~--2) can be 
neglected in the expansion up to first order of 1IN. Therefore we can write 

iA(")]= (2~ 1)-2(") n-2(")  t.~.t~("-l)-2("))l n(n 1) 2 

1 

For the last factor we obtain the desired two eigenvalues -.) (") 1 and 2~ "). 
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